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Introduction 
AI, machine learning, and deep learning are interchangeable and easily confusing

A program that can sense, reason, act and adapt Algorithms whose performance improve 
as they are exposed to more data over 
time

DEEP 
LEARNING

Subset of machine learning in which 
multilayered neural networks learn from 
vast amounts of data



Over several decades …

• Struggle to match human performance - intuitive human judgment  

• Only on ‘perfect datasets’ - sharp well-resolved with minimal noise 

Deep Learning 

• Automate or improve different analysis stages  

• Increasing efficiency, utility and ease of use of NMR spectroscopy 



Reconstruction of non-uniformly sampled (NUS)

Several excellent algorithms for reconstructing 
NUS NMR spectra using non-DL methods: 

- SMILE (Ying et al. 2017) 

- hmsIST (Hyberts et al. 2012)  

-MDD-NMR (Jaravine et al. 2006).  

Recent proof-of-principles studies have shown that DL based reconstruction methods have 
the ability to give reconstructions more rapidly and with higher fidelity than existing methods 



FID-Net
A versatile DNN architecture

FID-Net works effectively: 

- arbitrary sampling schedules (meaning can be deployed w/o further training & minimal 
user input) 

- processing time domain data beyond reconstruction tasks 

- Virtually decouple 13Cα-13Cβ couplings in HNCA spectra 
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patterns to provide both high quality reconstructions and a 
high degree of flexibility.

Convolutional layers have been crucial in the success 
of DNNs for analysing images (Guo et al. 2016). They are 
based on the idea that input data often has a hierarchical 
structure and each layer in a CNN learns a filter with a user 
defined size. These filters are then convolved with the input 
from the previous layer such that they will be activated when 
certain features in the data are identified. Typically, filter 
sizes in convolutional layers are fairly small giving them a 
small receptive field i.e. they are only sensitive to localised 
features from an input and cannot ‘learn’ long-range pat-
terns. While this is usually advantageous in image analysis, a 
large receptive field is required to extract information about 
resonances within an FID.

To overcome the receptive field issue of typical CNNs, 
FID-Net employs an approach similar to WaveNet, which 
was originally conceived in 2016 as a generative model 
for raw audio (Oord et al. 2016b). A raw audio signal is 
similar to an FID in that many time points are sampled in a 
short period of time and producing realistic audio requires 
an appreciation of both the short- and long-term patterns 
within the signal. In the WaveNet architecture, dilated con-
volution layers are used to give the network a large receptive 
field, which is capable of effectively analysing audio signals. 
Dilated convolutional layers skip a specified number of ele-
ments in the data, so it is effectively a convolutional layer 
with ‘holes’. By stacking convolutional layers with different 

dilation size, it is possible to create a block that acts like a 
normal convolutional layer with a very large filter size. This 
approach is indicated schematically in Fig. 1.

In FID-Net, the approach of dilated convolutions along 
with other features from WaveNet are employed. Gated 
activation units, as previously employed in the PixelCNN 
(Oord et al. 2016a) are used: these have both hyperbolic 
tangent and sigmodal activation functions in individual con-
volutional layers to help model the complex signal. FID-Net 
also employs skip and residual connections to aid the train-
ing and speed of convergence (He et al. 2015). However, a 
number of significant differences between the WaveNet and 
FID-Net architectures also exist. Firstly, the WaveNet archi-
tecture was designed as a generative audio model. Therefore, 
it is important that the temporal ordering of data points is 
maintained and predicted outputs depend only on preceding 
values. Consequently, causal padding is used in the convo-
lutional layers. Conversely, in the FID-Net model the aim 
is to recapitulate the full FID, for example, from a sparse 
starting point. To achieve this the FID-Net architecture needs 
to look both backward and forwards to help ascertain the 
correct value of a given FID time point. Secondly, in the 
WaveNet model a kernel size of two was used, whereas in 
FID-Net this is increased to eight. This is important when 
dealing with sparse data as a small kernel size will result in 
most inputs to the convolutional layers having no informa-
tion. With a kernel size of eight, when dealing with a sam-
pling rate of 12.5% in a 2D NMR spectrum, each time the 

Fig. 1  Schematic illustration 
of dilated convolutional layers 
that are extensively employed 
within FID-Net. These allow the 
network to have a large recep-
tive field, required for analysing 
FIDs, whilst individual filters 
are able to remain relatively 
small in size

direct
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sampled point
unsampled point

indirect
dimension
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layers with
different
dilations
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Reconstruction NUS spectra
FID-Net vs. SMILE vs. hmsIST

• 12.5% sampling  

• 100 sampling schedule with a 
different Poisson-gap sampling 
schedule 
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of sampled points these reconstructions (particularly for T4 
Lysozyme and HDAC8) are very challenging.

The reconstruction results are shown in Fig. 4. In general, 
it is clear that all three methods, SMILE, hmsIST, and FID-
Net, can provide good quality reconstructions, even at the 
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Virtual Decoupling 
13Cα-13Cβ in 3D-HNCA and HN(CO)CA
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reduce the time required to attain highly resolved HNCA 
and HN(CO)CA spectra, reducing the overall time require-
ment for backbone assignment.

Methods

Network architecture

The FID-Net architecture consists of many convolutional 
layers stacked into residual units, as shown in Fig. 2. Each 
residual unit consists firstly of a dilated convolutional layer 
composed of n filters (n = 128 for reconstruction network 
and n = 64 for decoupling network) with an 8 × 4 kernel size. 
Half of the filters are activated by a sigmoidal activation 
function and the other half by a hyperbolic tangent function. 
The results of these two activations are then multiplied (cre-
ating a gated activation unit) and passed through a second 
convolutional layer, with no dilation, also composed of n 
filters and an 8 × 4 kernel size. The output of this layer is 
passed to the end layers of the network and also added to 
the input of the layer to create the input for the next gated 
activation unit in the network.

The dilations rates employed for FID-Net are cycled 
through the values: 1, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28 
and 32. These dilations rates were empirically found to give 

good performance at both reconstructing and virtual decou-
pling. Given the time taken to the train the network (on the 
order of weeks) a detailed comparison of the effects of dif-
ferent dilations rates has not been possible. These dilation 
rates are cycled through three times to make the full FID-
Net, as indicated by the three blocks in Fig. 2.

The outputs of all the individual gated activation units 
are then summed and passed through a further convolutional 
layer with rectified linear activation. The final output is pro-
duced with a final convolutional layer composed of a single 
filter followed by hyperbolic tangent activation to ensure 
the values are between − 1 and 1. The python code used to 
create the neural network is provided in the supplementary 
materials.

The total number of trainable parameters in the recon-
struction network is 30,424,897 and 7,610,273 for the 
decoupling network, reflecting the increased number of 
filters in the reconstruction network. While the increased 
number of filters in the reconstruction network improves its 
performance, excellent performance for the decoupling net-
work is achieved with a smaller network that has the benefit 
of being faster to train (vide infra).
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Fig. 6  1H-13C projection from an HNCA spectrum of T4 Lysozyme 
a before (blue) and b after (green) virtual decoupling. Only positive 
contours are shown. The 1D 13C slices  taken from the spectra in pan-
els c (i) and (ii) demonstrate how the doublets in the spectrum are 

successfully decoupled yielding an improvement in resolution and 
two-fold increase in sensitivity for these peaks while the singlet gly-
cine peaks are unaltered

After virtual decouplingBefore

How successful doublets are successfully decoupled yielding an improvement in resolution and 
two-fold increase in sensitivity for these peaks while the singlet glycine peaks are unaltered



Virtual Decoupling (II)
13C-13C,  13CO-15N, 13Cα-13CO …

Traditional methods, such as IPAP and 
DIPAP, require the acquisition of multiple 
spectra and taking linear combinations 
to yield a singlet resolved spectrum.  

Conversely, FID-Net-based DNNs can be 
trained to decouple spectra with one or 
two couplings using a single spectrum

reducing their resolution and complicating interpretation. As
the couplings are homonuclear, decoupling schemes can cause
a range of deleterious effects in the spectra including
sidebands, Bloch−Siegert shifts of the second kind, and severe
relaxation losses.16,17 Consequently, the preferred method for
eliminating these one-bond couplings involves virtual decou-
pling.
The two most common methods for virtually decoupling a

single one-bond scalar coupling (a doublet) in direct detection
methods are in-phase antiphase18 (IPAP) and spin-state
selective excitation19 (S3E). In both cases two spectra are
required, doubling the minimum effective phase cycle of the
experiment. For IPAP, virtual decoupling of the spectra is
obtained by recording spectra with in-phase and antiphase
magnetization detected, respectively. Taking the sum and
difference of these two spectra yields two spectra, each
containing a peak at one component of the doublet. The peaks
are subsequently centered and added together to give the final
result. The S3E method follows a similar scheme, except that in
the detected magnetization the two components of the
doublets are 90° out of phase and in the second spectrum
the sign of one of the peaks is reversed. Therefore, after linear
combinations are taken, an additional 90° phase correction is
required before the spectra are summed. For cases where two
homonuclear scalar couplings are present, for example in 13Cα
directly detected experiments where there are couplings to
both 13CO and 13Cβ, double in-phase antiphase (DIPAP) or
double spin-state selective excitation (DS3E) methods can be
used to virtually decouple spectra. In this case four spectra
corresponding to the four permutations of the detected
magnetization are required.20−22

All of these methods for virtual decoupling at least double
the minimum phase cycle associated with the experiment and
often require additional delays and pulses in the pulse
sequences to create the requisite magnetization, causing signal
loss due to relaxation and pulse imperfections. The S3E
methodology is slightly less onerous in terms of time (taking
0.25/1JCC of time rather than 0.5/1JCC required for IPAP), but
S3E is also less robust when there are slight variations in the
scalar couplings in the spectrum. An alternative method of
virtual decoupling that avoids these disadvantages is to use a
signal processing algorithm that produces the decoupled
spectrum from one recorded coupled spectrum. Several
methods for virtual decoupling by deconvolution have been
developed, most notably deconvolution with maximum
entropy reconstruction.23−25 However, despite the potential
benefits associated with decoupling via signal processing,
methods based on taking linear combinations of spectra have
still been preferred.
Recently, we demonstrated that a deep neural network

(DNN) based on dilated convolutional layers, FID-Net, could
be trained to perform a variety of transformations on time
domain NMR data including reconstructing nonuniformly
sampled (NUS) spectra.26 Building on this idea, we show here
that FID-Net can be trained to decouple directly detected
spectra using a single spectrum (Figure 1). We apply this
methodology to 13C-detected protein CON spectra and
13C−13C spectra of protein side chains to decouple spectra
on the basis of the in-phase component of the experiment
alone. We further apply the methodology to 13Cα-detected
13Cα−13CO protein spectra showing the applicability of the
method to cases where one or two coupling constants are
present, facilitating the use of simpler pulse sequences and

providing superior decoupling performance to existing DIPAP
methods.

■ RESULTS
Deep Neural Network Architecture. We employed the

FID-Net architecture26 for our DNNs and here only provide a
brief outline of its features. When a DNN is used to model
time-domain NMR data (FIDs; free induction decays), a key
challenge to overcome is that information about the resonating
nuclei is not localized to a specific part of an FID but rather
contained over its entire length. Consequently, to analyze and
manipulate this kind of data, it is necessary for a DNN to
recognize both short- and long-range patterns within the data.
In FID-Net this is achieved by using stacked convolutional
layers with different dilation rates27 (Figure S1). A dilation
refers to a skipped point in a convolution, and by stacking
convolutions with increasing dilation it is possible to create
what is approximately a single convolutional layer with a very
large kernel size but with much higher efficiency.
Three FID-Net-based DNNs were trained to perform virtual

decoupling of 13C−13C correlation spectra of protein side
chains, 13CO−15N spectra, and 13Cα−13CO protein correlation
spectra. All the networks were trained exclusively on synthetic
data and subsequently tested on experimentally acquired data
(full training details are provided in the Supporting
Information).

Application to Protein Side-Chain Correlation Spec-
tra. Selective pulses can be used to obtain high-resolution
13C−13C spectra of side chains in uniformly [2H,13C]
isotopically labeled proteins.12 This experiment is reliant on
amino acids containing a “terminal” side chain 13C resonance
(13Ct) that is directly coupled to only one other “penultimate”

Figure 1. Schematic comparison of traditional and FID-Net-based
methods for virtual decoupling. Traditional methods, such as IPAP
and DIPAP, require the acquisition of multiple spectra and taking
linear combinations to yield a singlet resolved spectrum. Conversely,
FID-Net-based DNNs can be trained to decouple spectra with one or
two couplings using a single spectrum.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.1c04010
J. Am. Chem. Soc. 2021, 143, 16935−16942
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Virtual Decoupling (III)
13C-13C side-chain correlation spectra for per-deuterated proteins

min (see Supplementary Figs. 3, 4) and (3) a single uniformly
[2H,13C] isotopically labelled sample could be used to characterise
six side chains. The lack of directly bonded protons and absence of
efficient relaxation pathways for aliphatic 13C in highly deuterated
proteins dramatically reduces the 13C relaxation rates. For T4L
L99A, the isoleucine 13Cδ1 non-selective longitudinal relaxation
rates, R1, range between 0.12 and 0.24 s−1 at 278K and a field of
14.1 T (see Supplementary Table 1 and Supplementary Fig. 5). This
necessitates longer recycling delays and fewer scans per unit time,
and the lower gyromagnetic ratio of 13C compared with 1H leads to
an intrinsic lower signal-to-noise. However, reduced relaxation rates
also lead to small transverse relaxation rates, between 2.7 and 8.8 s
−1 for isoleucine 13Cδ1 in T4L L99A at 278 K and 14.1 T (see
Supplementary Table 2 and Supplementary Fig. 7), which in turn
lead to very sharp signals. For example, with the 13C-detected
method, it became possible to observe sites in arginine side chains
of T4L L99A that were not detectable in a 1H-detected equivalent
experiment, even when using a highly optimised isotope-labelling
scheme (Supplementary Fig. 6). Another striking advantage of 13C–
13C correlation spectra compared with 1H–13C spectra is the
substantially better chemical shift dispersion in the directly detected
dimension, resulting in significantly better peak separation (see

Supplementary Fig. 6 for a comparison). Moreover, as compared
with 1H–13C spectra, the 13C–13C correlation maps directly provide
the chemical shift of two aliphatic 13C that are both known to
report on the structure and sampling of side chains24,25.

Direct-detected 13C spectra of a 82-kDa protein. The excellent
spectra obtained on the medium-sized T4L L99A protein at low
temperature and the favourable 13C transverse relaxation rates
show that 13C-direct detection is ideally suited for characterising
side chains in large proteins. Side-chain 13C–13C correlation
maps were recorded for the significantly larger 82-kDa malate
synthase G (MSG) protein26. Figure 3a and c shows the isoleucine
13Cδ1–13Cγ1 and valine 13Cγ–13Cβ correlation maps of MSG,
respectively, where excellent chemical shift dispersion and reso-
lution result in nearly no overlap of peaks even in this large and
uniformly [2H,13C] isotopically labelled system. The slow trans-
verse relaxation rate of aliphatic 13C in per-deuterated proteins
means that the experiment shown in Fig. 2a easily can be
extended to obtain numerous other NMR parameters reporting
on motions, conformations and interactions. TOtal Correlated
SpectroscopY (TOCSY) NMR experiments are typically used to
aid side-chain chemical shift assignment28 of proteins and a
couple of representative examples are shown in Fig. 3b for MSG,
with details of the sequence given in Supplementary Fig. 8.

Characterisation of millisecond dynamics. A full characterisa-
tion of the role of side chains requires an appreciation of their
motions within the protein. Of substantial importance is that the
method detailed above can be extended to allow quantification of
side-chain motions across a wide range of timescales. Although
many experiments will be possible using the new scheme, two
examples, which together report on side-chain motions on
timescales from nanoseconds to milliseconds, were chosen here to
highlight the versatile applicability.

Protein dynamics and conformational exchange on the
millisecond timescale have been shown to be important for the
function of many proteins29 and the chemical exchange
saturation transfers (CEST)19,30 NMR experiment, amongst
others, allows a quantification of exchange events on this
timescale. CEST experiments have recently been adapted for side
chains in small proteins14, in a 1H-detected manner. Integrating
CEST with the 13C-detected method described above (see
Supplementary Fig. 9) allows quantification of side-chain
conformational exchange in medium-to-large proteins between
the ground state (G) and an excited state (E). Examples of CEST
profiles are shown in Fig. 4 and Supplementary Fig. 9, where the
conformational exchange of T4L L99A at 278 K is quantified by a
13C-detected CEST experiment. The calculated overall exchange
rate, kex= 128 ± 18 s−1, and the population of the excited state,
pE= 1.15 ± 0.11% (see Supplementary Fig. 10), agree well with
previous studies11 showing that reliable parameters are derived
from 13C-detected CEST experiments. The chemical shifts
of aliphatic 13C within the protein side chains report on the
rotameric sampling of the side chain24, and the results of the
CEST experiments in Fig. 4 also report on the rotameric sampling
in the excited state. Specifically, from the chemical shifts obtained
for V103 in the ground and excited states, ϖG and ϖE,
respectively, it can be calculated24 that the χ1 angle of V103
changes from a predominantly trans conformation (91% trans,
9% gauche-plus) in the ground state to a mainly gauche-minus
conformation in the excited state (26% gauche-plus, 16% trans,
58% gauche-minus), which is in agreement with the existing
structures of T4L L99A in the ground and the excited state11.
Access to the 13C chemical shifts in the excited state via the 13C-
detected CEST experiment also reveals that the V103 side chain is
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Fig. 2 13C–13C side-chain correlation spectra of per-deuterated proteins.
a Schematic representation of the NMR pulse sequence used to obtain 13C–
13C side-chain correlation spectra. The flow of the magnetisation between
13Ct (blue) and 13Cp (red) is shown above the sequence with colour
gradients. The following delays are used: Δ= 1/(4JCC) ≈ 7.1 ms, T= 1/
(2JCC) ≈ 14.1 ms, where JCC is the one-bond 13C–13C scalar coupling
constant. Rectangular pulses are high-power and not selective, bell-shaped
pulses are frequency selective (90°: white outlined, 180°: black).
Deuterium, 2H, is decoupled throughout the sequence and frequency
discrimination is obtained by states–TPPI of phase ϕ21. b Schematic
representation of post-processing to obtain the decoupled spectrum. c
Arginine 13Cδ–13Cγ correlation of the 18-kDa protein T4L L99A, obtained on
a 1.4 mM sample at a static field of 14.1 T at 278 K in 37 min
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min (see Supplementary Figs. 3, 4) and (3) a single uniformly
[2H,13C] isotopically labelled sample could be used to characterise
six side chains. The lack of directly bonded protons and absence of
efficient relaxation pathways for aliphatic 13C in highly deuterated
proteins dramatically reduces the 13C relaxation rates. For T4L
L99A, the isoleucine 13Cδ1 non-selective longitudinal relaxation
rates, R1, range between 0.12 and 0.24 s−1 at 278K and a field of
14.1 T (see Supplementary Table 1 and Supplementary Fig. 5). This
necessitates longer recycling delays and fewer scans per unit time,
and the lower gyromagnetic ratio of 13C compared with 1H leads to
an intrinsic lower signal-to-noise. However, reduced relaxation rates
also lead to small transverse relaxation rates, between 2.7 and 8.8 s
−1 for isoleucine 13Cδ1 in T4L L99A at 278 K and 14.1 T (see
Supplementary Table 2 and Supplementary Fig. 7), which in turn
lead to very sharp signals. For example, with the 13C-detected
method, it became possible to observe sites in arginine side chains
of T4L L99A that were not detectable in a 1H-detected equivalent
experiment, even when using a highly optimised isotope-labelling
scheme (Supplementary Fig. 6). Another striking advantage of 13C–
13C correlation spectra compared with 1H–13C spectra is the
substantially better chemical shift dispersion in the directly detected
dimension, resulting in significantly better peak separation (see
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with 1H–13C spectra, the 13C–13C correlation maps directly provide
the chemical shift of two aliphatic 13C that are both known to
report on the structure and sampling of side chains24,25.

Direct-detected 13C spectra of a 82-kDa protein. The excellent
spectra obtained on the medium-sized T4L L99A protein at low
temperature and the favourable 13C transverse relaxation rates
show that 13C-direct detection is ideally suited for characterising
side chains in large proteins. Side-chain 13C–13C correlation
maps were recorded for the significantly larger 82-kDa malate
synthase G (MSG) protein26. Figure 3a and c shows the isoleucine
13Cδ1–13Cγ1 and valine 13Cγ–13Cβ correlation maps of MSG,
respectively, where excellent chemical shift dispersion and reso-
lution result in nearly no overlap of peaks even in this large and
uniformly [2H,13C] isotopically labelled system. The slow trans-
verse relaxation rate of aliphatic 13C in per-deuterated proteins
means that the experiment shown in Fig. 2a easily can be
extended to obtain numerous other NMR parameters reporting
on motions, conformations and interactions. TOtal Correlated
SpectroscopY (TOCSY) NMR experiments are typically used to
aid side-chain chemical shift assignment28 of proteins and a
couple of representative examples are shown in Fig. 3b for MSG,
with details of the sequence given in Supplementary Fig. 8.

Characterisation of millisecond dynamics. A full characterisa-
tion of the role of side chains requires an appreciation of their
motions within the protein. Of substantial importance is that the
method detailed above can be extended to allow quantification of
side-chain motions across a wide range of timescales. Although
many experiments will be possible using the new scheme, two
examples, which together report on side-chain motions on
timescales from nanoseconds to milliseconds, were chosen here to
highlight the versatile applicability.

Protein dynamics and conformational exchange on the
millisecond timescale have been shown to be important for the
function of many proteins29 and the chemical exchange
saturation transfers (CEST)19,30 NMR experiment, amongst
others, allows a quantification of exchange events on this
timescale. CEST experiments have recently been adapted for side
chains in small proteins14, in a 1H-detected manner. Integrating
CEST with the 13C-detected method described above (see
Supplementary Fig. 9) allows quantification of side-chain
conformational exchange in medium-to-large proteins between
the ground state (G) and an excited state (E). Examples of CEST
profiles are shown in Fig. 4 and Supplementary Fig. 9, where the
conformational exchange of T4L L99A at 278 K is quantified by a
13C-detected CEST experiment. The calculated overall exchange
rate, kex= 128 ± 18 s−1, and the population of the excited state,
pE= 1.15 ± 0.11% (see Supplementary Fig. 10), agree well with
previous studies11 showing that reliable parameters are derived
from 13C-detected CEST experiments. The chemical shifts
of aliphatic 13C within the protein side chains report on the
rotameric sampling of the side chain24, and the results of the
CEST experiments in Fig. 4 also report on the rotameric sampling
in the excited state. Specifically, from the chemical shifts obtained
for V103 in the ground and excited states, ϖG and ϖE,
respectively, it can be calculated24 that the χ1 angle of V103
changes from a predominantly trans conformation (91% trans,
9% gauche-plus) in the ground state to a mainly gauche-minus
conformation in the excited state (26% gauche-plus, 16% trans,
58% gauche-minus), which is in agreement with the existing
structures of T4L L99A in the ground and the excited state11.
Access to the 13C chemical shifts in the excited state via the 13C-
detected CEST experiment also reveals that the V103 side chain is
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pulses are frequency selective (90°: white outlined, 180°: black).
Deuterium, 2H, is decoupled throughout the sequence and frequency
discrimination is obtained by states–TPPI of phase ϕ21. b Schematic
representation of post-processing to obtain the decoupled spectrum. c
Arginine 13Cδ–13Cγ correlation of the 18-kDa protein T4L L99A, obtained on
a 1.4 mM sample at a static field of 14.1 T at 278 K in 37 min

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09743-4 ARTICLE

NATURE COMMUNICATIONS | ��������(2019)�10:1747� | https://doi.org/10.1038/s41467-019-09743-4 | www.nature.com/naturecommunications 3

Hansen DF, Nature Communications (2019) 10:1747 

13C nucleus (13Cp) with a significantly different chemical shift
distribution. The scalar coupling between 13Ct and 13Cp (∼35
Hz) evolves during the direct acquisition period, resulting in a
doublet. In the original implementation this coupling was
resolved by using the traditional IPAP method.
In Figure 2, the performance of DNN decoupling using the

FID-Net architecture is compared with the traditional
decoupling IPAP method for 13C−13C correlation maps of
the 18 kDa protein T4 lysozyme (T4L). Panels A and B of
Figure 2 show the results of decoupling the valine 13Cγ1,2−13Cβ
and isoleucine 13Cδ1−13Cγ1 spectra, respectively. The spectra
clearly demonstrate the success of FID-Net decoupling on
experimental data based on an in-phase spectrum alone. The
1D slices taken from the spectra show that the decoupling
fidelity in the FID-Net spectra is excellent, in terms of both
peak positions and intensities, and the procedure works well
even when several peaks are present in one slice and with low-
intensity peaks.
The success of the FID-Net decoupling is dependent only

on the size of the scalar couplings and not the specific residue
being studied. Thus, the network can also be readily applied to
other sites, including arginine, lysine, proline, and threonine
side chains, where the size of the scalar coupling is similar.12

Application to Protein CON Spectra. While benchmarks
on the 13Ct−13Cp spectra show the potential of a DNN-based
approach for virtual decoupling, each of these spectra has
relatively few peaks that are well dispersed. To assess the
robustness of the DNN-based decoupling method, we
switched our attention to the CON class of experiments that
provide 13CO−15N correlations maps.7 Unlike for the
13Ct−13Cp spectra where only one or two types of amino
acids can be characterized in each spectrum, severely
restricting the total number of signals in the spectrum, a
CON experiment simultaneously reports on all backbone
residues. Therefore, the spectrum will contain many more
cross-peaks and a much greater probability of overlap between
resonances, making the task of virtual homonuclear decoupling
substantially more demanding.
In Figure 3, we compare the results of decoupling using the

FID-Net method and IPAP for CON spectra of the proteins
ubiquitin and α-synuclein. In both cases we see that the DNN
approach can decouple the spectra effectively and shows
comparable performance to the IPAP approach, even in the
presence of substantially more cross-peaks. Notably, even
when the components of different doublets are overlapping,
the DNN can correctly decouple the peaks. As shown in

Figure 2. Comparison of in-phase (red), FID-Net decoupled (green), and IPAP decoupled (blue) 13Ct−13Cp spectra for the (A) 13Cγ1,2−13Cβ
valine and (B) 13Cδ1−13Cγ1 isoleucine spectra of [2H,13C]-labeled T4L recorded at 14.1 T (600 MHz) and at a temperature of 298 K. For all
spectra, the alternative color indicates negative contour levels. The FID-Net DNN carries out the decoupling procedure using only the in-phase
spectra while the IPAP procedure uses both the in-phase and antiphase (not shown) spectra. 1D slices from the indicated regions of each spectra
are shown in (ii). For 2D spectra, FID-Net decoupled and IPAP decoupled spectra are shown at the same contour levels relative to the maximum
signal, facilitating comparisons of signal-to-noise between the spectra.
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Figures S2 and S3, all expected cross-peaks are recovered in the
FID-Net decoupled spectra for both proteins. The ability to
virtually decouple CON spectra containing large numbers of
peaks further demonstrates the robustness of the DNN
decoupling approach and its viability as an alternative to
IPAP or S3E methods.
An important point to address in both the IPAP and FID-

Net decoupled spectra is that of thermal noise in the spectrum.
During training of the DNN random normal noise with
standard deviation between 0.001 and 0.15 times the
maximum signal is added to the input signal, with the network
aiming to produce an output that is denoised. The results
shown in Figures 2 and 3 (also Figures S2 and S3) show that
the thermal noise in the spectra is suppressed to a large degree.
A key advantage the neural network has in attempting to
denoise the spectra is that all signals in the input spectra have a
similar signature; that is, in the time domain they are all cosine
modulated with a coupling constant in a specific range. This
makes the task of the neural network in trying to effectively
disentangle signals much more straightforward than when the
signal can have arbitrary properties.

To gain additional insight into the performance of the neural
network on experimental data, varying amounts of random
noise were added to the most challenging spectrum, the CON
spectrum of α-synuclein, and the decoupling was assessed for
both DNN-based decoupling and IPAP decoupling. The
results of this assessment are shown in Figure 4. It is seen
that the DNN-based method remains robust even in the
presence in large amounts of noise. Specifically, peaks that
remain clearly distinguishable above the noise remain well
decoupled, and the underlying noise in the spectra is kept
minimalparticularly in comparison to the IPAP approach. It
is clear, however, that when a cross-peak is close in intensity to
the noise, it can be suppressed in the DNN approach, resulting
in it missing from the spectrum or having a distorted peak
shape and/or intensity. Overall, we find that the DNN
approach has a preference for peaks with very low signal-to-
noise to not be present in the decoupled spectrum as opposed
to generating artifacts. In the presence of large amounts of
noise, however, the neural network can also produce spurious
peaks as shown in middle-right panel of Figure 4. The
maximum size of these artifacts is no greater than the noise in
the input spectrum.

Figure 3. (i) Comparison of in-phase (red), FID-Net decoupled (green), and IPAP decoupled (blue) CON spectra for (A) ubiquitin and (B) α-
synuclein. (ii) 1D slices for each of the spectra from the indicated regions. Full acquisition details for the spectra are provided in the Supporting
Information.
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of deuterated amino acids this approach is not suitable for the
large-scale production of perdeuterated proteins. As an alternative,
perdeuterated rich medium that is supplemented with methyl-
labeled alanine has been used. However, this approach suffers from
low incorporation levels due to the presence of NMR-inactive ala-
nine in the growth medium [68]. Currently, the most cost-efficient
way to prevent metabolic scrambling from [methyl-13C]-2-2H-
alanine into other methyl groups is by the simultaneous addition
of a-ketoisovalerate, succinate, and isoleucine (e.g. in a deuterated
form) to the D2O-based M9 minimal growth medium (Table 1)
[69].

3.1.8. Threonine-c2
Compared with other methyl-containing amino acids, threonine

has a high propensity to be found on protein surfaces and at
nucleotide binding sites, which is due to its capability to form side
chain hydrogen bonds [66,70]. Unfortunately, labeling of threonine
is challenging due to many crosslinks between the biosynthesis
pathways of threonine and other amino acids (Fig. 4). First
attempts to methyl-label threonine residues were based on the
use of [2-13C]-glycerol as a carbon source [71] This strategy suffers
from low labeling efficiency, severe isotope scrambling even in the
presence of supplemented alanine, isoleucine, methionine, lysine

Fig. 5. Methyl group assignment strategies. A: In an ILVMA-labeled methyl TROSY spectrum (black), the individual amino acid types can be identified based on samples that
are NMR-active only in IA (cyan, middle) or IV (magenta, right) methyl groups. Note the significant overlap in the chemical shift ranges of methyl resonances from alanine and
valine residues and from valine and leucine residues. In the IA-labeled sample, the scrambling of methyl groups from alanine to leucine and valine was suppressed by the
addition of NMR-inactive a-ketoisovalerate (Table 1). In IV-labeled samples, the scrambling of the labeled a-ketoisovalerate precursor into leucine was suppressed by the
addition of NMR-inactive a-ketoisocaproate (Table 1). B: Assignment of methyl resonances is possible through the transfer of methyl group magnetization to the protein
backbone (blue arrows). Alternatively, ‘‘out-and-back” experiments (red arrows) can be used to correlate methyl group resonances with a subset of side chain resonances. C:
Schematic representation of the divide-and-conquer approach. The resonances from a representative smaller part of the complex (red) can be assigned; these assignments
can subsequently be transferred to the full assembly (black resonances). Note that some resonances can shift between the smaller part and the full assembly, as indicated for
e.g. residue 234. Provided such shift changes are small relative to the dispersion of the other signals, the approach can still give unambiguous results. D: Schematic
representation of the structure-based assignment of methyl resonances. The measured NOE intensities (experimental distances) are matched with known distances from a
three- dimensional structure. The displayed ‘‘strips” represent data from a C-C-H NOESY experiment. E: Schematic representation of PRE-assisted assignment of methyl
groups. A spin label is attached to the protein based on the known structure. The experimental PREs are subsequently matched with distances that are known from the
structure; the weaker the signal in the oxidized spectrum (relative to the corresponding signal in the control, i.e. reduced, spectrum), the shorter the distance between the
methyl group and the spin label. F: Schematic representation of the assignment of a methyl resonance (isoleucine 345) based on mutagenesis. The HMQC spectra of the WT
(black) and mutant (green) proteins are compared. The resonance of isoleucine 345 is absent in the mutant spectrum. Note the additional chemical shift perturbations (e.g. in
isoleucine 234) in the mutant protein that are due to slight changes of the local structure. In some cases, these changes can be of such an extent that an unambiguous
assignment is not possible.

66 S. Schütz, R. Sprangers / Progress in Nuclear Magnetic Resonance Spectroscopy 116 (2020) 56–84NMR Spectroscopy of Large Non-Deuterated Proteins 

Karunanithy et al. 2023 (preprint)   2 

have now been successfully applied to several tasks in mag-
netic resonance spectroscopy including the analysis of 
DEER data12, reconstruction of non-uniformly spectra7,9,13, 
peak-picking11,14, and virtual homonuclear decoupling8. 

Herein we demonstrate that deep neural networks 
(DNNs) can be used, in place of the traditional 1822 Fourier 
transform15, to deliver very high-quality 13C-1H correlation 
spectra from uniformly 13C protonated samples of even large 
proteins. In brief, the DNNs presented below are trained to 
map the broad 13C-1H spectra of uniformly labelled proto-
nated samples to spectra that are akin to classical methyl-
TROSY spectra. Specifically, the DNNs are applied to time 
domain NMR data, remove the effects of one bond 13C-13C 
scalar couplings in the 13C dimension, and increase the reso-
lution for both the 1H and 13C dimensions by effectively 
sharpening the observed cross-peaks. The net effect of these 
two processes is that following the application of these 
DNNs, the appearance of peaks associated with methyl bear-
ing side chains in protonated samples are approaching those 
attained from deuterated samples with specifically labelled 
side chains. A schematic illustration and summary of the ef-
fects of the DNNs is provided in Figure 1, where the charac-
terisation of the 81 kDa MSG is used as an example. 

We robustly cross-validate the trained DNNs on syn-
thetic data and show the applicability of the trained DNNs 
on experimental data, where we demonstrate the effective-
ness of this methodology on a range of increasingly large 
proteins: HDAC8 (42 kDa), Malate synthase G (MSG, 81 
kDa) and α7α7 (360 kDa), demonstrating how the DNNs 
provide a highly effective route to studying large proteins by 
NMR. Finally, we apply the new method to obtain 3D Me-
thyl NOESY NMR spectra of MSG, which can aid in chemi-
cal shift assignments and/or structural characterisations. 

Results 
Attempting to measure high-quality 13C-1H correlations 
maps on large proteins using classical approaches, such as 
13C-1H HSQC spectra, run into several problems. Firstly, 
since the proteins are uniformly 13C labelled they will be sub-
ject to one-bond 13C-13C scalar couplings that will evolve dur-
ing indirect chemical shift evolution, splitting signals into 
multiplets and complicating interpretation of the spectrum. 
Of perhaps greater significance, is that the lack of deuter-
ation in the system which means that signals will be signifi-
cantly broadened in both the 13C and 1H dimensions as a re-
sult of significantly increased dipolar relaxation. Conse-
quently, peaks in the spectra will be very difficult to identify 
and difficult to assign to specific sites in the protein making 
the spectra challenging to interpret and limiting the utility 
of such a labelling scheme. Other tools such as constant-time 
13C-1H HSQC spectra16,17 also do not provide good spectra of 
large uniformly labelled proteins, since the constant-time 
substantially skew the intensities and even renders many of 
the signals invisible. However, due to the inherent sensitiv-
ity of methyl groups, 13C-1H correlations maps of protonated 
large proteins nonetheless contain a significant amount of 
information from many of the methyl groups present. The 
challenge is that these spectra are very hard to interpret, 

even by specialists, due to the poor resolution, see e.g. Fig-
ure 1b.  

Training and cross-validation on synthetic data 
In order to transform 13C-1H correlation maps from 
universally 13C labelled proteins into spectra that can easily 
be interpreted we train two DNNs, both of which are based 
on the FID-Net architecture. Full training details for the 
DNNs are provided in the supplementary information. 
Briefly, the first network is trained to transform time-
domain FIDs in the 13C dimension by removing a single 
cosine modulation corresponding to a 13C-13C coupling 
constant and reducing the decay rate of the peak such that it 
gives a sharper signal in frequency space.  The second DNN 
is trained to act on FIDs in the 1H dimension. In this case the 
network is trained only to reduce the decay rate of FIDs so 
that peaks are sharper in the frequency domain of this 

Figure 1: Overview of processing NMR spectra with FID-Net. (a) 
Overview of traditional tools used to characterise methyl groups in large 
proteins, which requires expression in bacterial cells such as E. coli, 
deuteration of the protein, and specific isotopic labelling. (b) Overview 
of our new method to characterise large, non-deuterated, uniformly la-
belled proteins enabled by processing with the deep neural network FID-
Net. Two FID-Net networks are trained, (i) one network trained to virtu-
ally decouple and enhance the in the 13C dimension of the initial 2D 13C-
1H correlation spectra (green-blue to red spectra), (ii) followed by a sec-
ond network trained to enhance the resolution in the 1H dimension (red 
to orange spectra). The example show is that of Malate Synthase G 
(MSG) an 80 kDa protein. As the protein is uniformly labelled it gives rise 
to peaks associated with all methyl groups in the protein, including me-
thionine, alanine and threonine residues as well as isoleucine γ2 methyl 
groups. The additional methyl probes offered by the uniform labelling 
scheme are highlighted on the structure of MSG (red). The estimated 
costs in a and b are calculated using listed prices from Sigma-Aldrich. 
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higher yields during expression, a key advantage of the 
methodology here is that information is provided on all 
methyl-bearing side chains, including, alanine 13Cβ, 
isoleucine 13Cγ2 and 13Cδ1, leucine 13Cδ1,δ2, methionine 13Cε, 
threonine 13Cγ2, and valine 13Cγ1,γ2 since the sample is 
uniformly 13C labelled. It should be mentioned that methods 
do exist for specific labelling of nearly all methyl groups21, 
however, these approaches typically lead to reduced yields 
and come with substantially larger costs. 

Following cross-validations on synthetic data, the 
trained FID-Net networks were applied to the 42 kDa 
protein HDAC819. While a protein of this size is relatively 
small for methyl-TROSY studies, as shown in the 13C-1H 
correlation spectrum in Figure 3a (blue-green) of a non-
deuterated, uniformly 13C labelled sample, signals in the 
methyl region of the spectrum are nonetheless broad and 
overlapped, making it difficult to discern many of the 

signals. This also holds for a 
constant-time 13C-1H HSQC 
spectrum, where the constant-
time (27 ms or 54 ms) 
substantially skew the 
intensities and renders many of 
the signals invisible, see Figure 
S1. Conversely, following 
application of the FID-Net 
Networks (orange spectrum), 
Figure 3b, the signals are 
virtually decoupled in the 13C 
dimension and sharpened in 
both the 13C and 1H dimensions. 
This makes peak identification 
within these spectra much more 
straightforward. By overlaying 
the FID-Net transformed 
spectrum with the classical 
methyl-TROSY ILVM spectrum 
(blue) of a deuterated sample of 
HDAC8, Figure 3c, where only 
the side chains of these amino 
acids are labelled, an excellent 
correspondence is seen between 
isoleucine, leucine and valine 
methyl peaks with the FID-Net 
processed spectrum. The 
linewidths of the peaks in both 
of these spectra are highly 
comparable and all expected 
peaks from the spectrum are 
recovered in the FID-Net 
processed spectrum. Additional 
peaks are also visible in the FID-
Net processed spectrum, due to 
the presence of additional 
labelled methyl groups in the 
sample, such as, threonine and 
isoleucine 13Cγ2. Small peak-
shifts are mainly due to the 

isotope shifts originating from deuteration22. Full overlay of 
the FID-Net processed spectrum of HDAC8 and the methyl-
TROSY spectrum is shown in Figure S2. 

To test the robustness of the FID-Net processing 
approach on larger systems, with substantially more cross-
peaks and signal overlap, we next applied the FID-Net DNNs 
to study the methyl region of the protein MSG. This 723-
residue protein has been studied extensively by NMR20,23, 
but all of these studies have relied on having a deuterated 
samples to minimise the broadening of signals due to 
extensive relaxation. However, as shown in Figure 3e, by 
coupling the intrinsic sensitivity of methyl groups with FID-
Net processing it is possible to get high quality methyl-
TROSY like spectra for this system at a fraction of the cost 
and with the added bonus of simultaneously giving access to 
signals associated with all methyl bearing side chains. As 

Figure 3: FID-Net processed methyl HSQC spectra of uniformly 13C labelled non-deuterated proteins. 
(a) A 13C-1H HSQC NMR spectra of uniformly 13C labelled, non-deuterated, HDAC8 (42 kDa) processed with 
a standard discrete Fourier transform. (b) The spectrum in a processed with the FID-Net DNNs. (c) Com-
parison of FID-Net processed HSQC spectrum in b (orange) with a methyl-TROSY HMQC spectrum of an 
ILV specifically labelled and deuterated HDAC8 (blue). (d) A 13C-1H HSQC NMR spectra of uniformly 13C 
labelled MSG (80 kDa) processed with a standard discrete Fourier transform. (e) The spectrum in d pro-
cessed with the FID-Net DNNs. (f) Comparison of FID-Net processed HSQC spectrum in d (orange) with a 
methyl-TROSY HMQC spectrum of an ILV specifically labelled and deuterated MSG (blue) for two selected 
regions. Many methyl groups are not visible in the ILV labelled sample, such as, Isoleucine 13Cγ2 (labelled). 
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complexes27. However, the labelling requirements for these 
experiments are arduous, ideally requiring perdeuteration 
and the use of specific precursors to introduce [1H,13C]-
labelled methyl moieties in specific locations. While the 
resulting spectrum are of outstanding quality, the cost of 
such labelling is high, typically leads to lower protein yields 
and is inconsistent with protein production methods for 
many systems of interest such as eukaryotic and membrane 
proteins. Above, we presented an alternative method to 
classical methyl-TROSY NMR to characterise large proteins 
in solutions, which is based on uniformly protonated 

samples and processing with FID-Net neural networks, with 
which one can characterise proteins up to about 350 kDa. 

The main disadvantage of the FID-Net method is that the 
process of peak-sharpening inevitably leads to the intrinsic 
peak intensity being lost. Accurately measuring peak 
intensities is critical in a number of NMR experiments, 
including diffusion and relaxation, so it is not advised to 
record these experiments in conjunction with FID-Net 
processing. However, for a large body of NMR experiments 
the main parameter of importance is the chemical shift as 
well as a reasonable estimate of the peak intensity, and in 
these cases we believe that FID-Net processing will prove 
extremely useful. Some of the uses we envisage include 
interaction studies, titrations, and facile chemical shift 
assignment of methyl peaks by either NOESY spectra (as 
demonstrated here for MSG) or by point mutations, which 
often requires several samples.  

A number of approaches have previously been suggested 
to overcome the limitations of methyl-TROSY highlighted 
above, particularly when making perdeuterated samples is 
not possible. Recent examples include the use of delayed 
decoupling, as has also been used for very large complexes 
with molecular weights in the MDa range28, and optimised 
NMR pulse sequences to probe methionine residues in 
proteins with molecular weights up to 240 kDa26 as well as 
the use of local deuteration of leucine residues to probe their 
methyl groups in membrane and insect cell derived 
proteins29. While very powerful, these methods are limited 
in that they only consider a single residue type, thus 
restricting the number of available probes in the system. 
Conversely, the methodology developed here and based on 
processing with deep neural networks offers simultaneous 
access to all methyl bearing side chains in a protein, offering 
many more probes of biomolecular behaviour. By 
decoupling signals in the 13C dimension and sharpening 
them in both the 1H and 13C dimensions the resulting spectra 
resemble those given by perdeuterated samples with specific 
methyl labelling.  

Conclusion 
We believe that our new methodology will significantly 
lower the barrier to entry for NMR of large systems. Indeed, 
even for well-studied systems such as MSG, while 
methodologies exist for obtaining methionine and threonine 
assignments, the processing with the FID-Net DNNs 
provides a straightforward method. Finally, we envisage that 
the idea of using DNNs for peak sharpening and 
simultaneous homonuclear virtual decoupling within NMR 
could be applied in other cases to improve spectra and that 
processing NMR data with DNNs, as opposed to a standard 
1822 Fourier transform, will allow for many new ventures 
within NMR. As such we see the presented method as 
merely representing a “firing of the starting gun” that will 
pave the way for a plethora of ways to generally analysing 
and transforming NMR spectra with deep neural networks. 
 

Figure 5: NOESY spectra of non-deuterated 80 kDa MSG. (a)-to-(d)  
2D planes of the 3D 13C-13C-1H NOESY spectra for methyl planes of (a) 
I5-13Cδ1 and A14-13Cβ. (b) I327-13Cδ1 and A321-13Cβ. (c) A63-13Cβ and 
L88-13Cδ1. (d) M415-13Cε and L375-13Cδ1. (e) Methyl groups of Ile, Leu, 
Val, Met, Ala, and Thr showing NOE cross-peaks in 3D 13C-13C-1H  
NOESY spectra are highlighted as cyan sphere on cartoon presentation 
of Malate Synthase G (MSG) structure [PDB ID:1D8C]. (f) Normalized 
NOE cross-peak volumes versus interproton distances. Gray circles in 
the plot represent the individual data points obtained for each cross-
peak. Blue circles represent the average normalized NOE cross-peaks 
volume over interproton-distance intervals of 0.2 Å. The blue line repre-
sents the fitted curve of NOE cross-peaks volume (V) and interproton 
distance (r) using equation V = C/r6, where C is a constant. 
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complexes27. However, the labelling requirements for these 
experiments are arduous, ideally requiring perdeuteration 
and the use of specific precursors to introduce [1H,13C]-
labelled methyl moieties in specific locations. While the 
resulting spectrum are of outstanding quality, the cost of 
such labelling is high, typically leads to lower protein yields 
and is inconsistent with protein production methods for 
many systems of interest such as eukaryotic and membrane 
proteins. Above, we presented an alternative method to 
classical methyl-TROSY NMR to characterise large proteins 
in solutions, which is based on uniformly protonated 

samples and processing with FID-Net neural networks, with 
which one can characterise proteins up to about 350 kDa. 

The main disadvantage of the FID-Net method is that the 
process of peak-sharpening inevitably leads to the intrinsic 
peak intensity being lost. Accurately measuring peak 
intensities is critical in a number of NMR experiments, 
including diffusion and relaxation, so it is not advised to 
record these experiments in conjunction with FID-Net 
processing. However, for a large body of NMR experiments 
the main parameter of importance is the chemical shift as 
well as a reasonable estimate of the peak intensity, and in 
these cases we believe that FID-Net processing will prove 
extremely useful. Some of the uses we envisage include 
interaction studies, titrations, and facile chemical shift 
assignment of methyl peaks by either NOESY spectra (as 
demonstrated here for MSG) or by point mutations, which 
often requires several samples.  

A number of approaches have previously been suggested 
to overcome the limitations of methyl-TROSY highlighted 
above, particularly when making perdeuterated samples is 
not possible. Recent examples include the use of delayed 
decoupling, as has also been used for very large complexes 
with molecular weights in the MDa range28, and optimised 
NMR pulse sequences to probe methionine residues in 
proteins with molecular weights up to 240 kDa26 as well as 
the use of local deuteration of leucine residues to probe their 
methyl groups in membrane and insect cell derived 
proteins29. While very powerful, these methods are limited 
in that they only consider a single residue type, thus 
restricting the number of available probes in the system. 
Conversely, the methodology developed here and based on 
processing with deep neural networks offers simultaneous 
access to all methyl bearing side chains in a protein, offering 
many more probes of biomolecular behaviour. By 
decoupling signals in the 13C dimension and sharpening 
them in both the 1H and 13C dimensions the resulting spectra 
resemble those given by perdeuterated samples with specific 
methyl labelling.  

Conclusion 
We believe that our new methodology will significantly 
lower the barrier to entry for NMR of large systems. Indeed, 
even for well-studied systems such as MSG, while 
methodologies exist for obtaining methionine and threonine 
assignments, the processing with the FID-Net DNNs 
provides a straightforward method. Finally, we envisage that 
the idea of using DNNs for peak sharpening and 
simultaneous homonuclear virtual decoupling within NMR 
could be applied in other cases to improve spectra and that 
processing NMR data with DNNs, as opposed to a standard 
1822 Fourier transform, will allow for many new ventures 
within NMR. As such we see the presented method as 
merely representing a “firing of the starting gun” that will 
pave the way for a plethora of ways to generally analysing 
and transforming NMR spectra with deep neural networks. 
 

Figure 5: NOESY spectra of non-deuterated 80 kDa MSG. (a)-to-(d)  
2D planes of the 3D 13C-13C-1H NOESY spectra for methyl planes of (a) 
I5-13Cδ1 and A14-13Cβ. (b) I327-13Cδ1 and A321-13Cβ. (c) A63-13Cβ and 
L88-13Cδ1. (d) M415-13Cε and L375-13Cδ1. (e) Methyl groups of Ile, Leu, 
Val, Met, Ala, and Thr showing NOE cross-peaks in 3D 13C-13C-1H  
NOESY spectra are highlighted as cyan sphere on cartoon presentation 
of Malate Synthase G (MSG) structure [PDB ID:1D8C]. (f) Normalized 
NOE cross-peak volumes versus interproton distances. Gray circles in 
the plot represent the individual data points obtained for each cross-
peak. Blue circles represent the average normalized NOE cross-peaks 
volume over interproton-distance intervals of 0.2 Å. The blue line repre-
sents the fitted curve of NOE cross-peaks volume (V) and interproton 
distance (r) using equation V = C/r6, where C is a constant. 
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312 NOE cross-peaks were 
observed among 170 methyl 
bearing residues from 
different regions of the 
protein



How to … 
• https://github.com/gogulan-k/FID-Net 

• d.hansen@ucl.ac.uk
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