

Core capability for Chemistry Research – EPSRC & The University of Edinburgh

500 & 400 MHz nitrogen cooled cryoprobes

- 500 installed in Dec 2013
- used from Jan 2014
- 400 installed in May 2014
- 5 mm Multinuclear observe
- H&F&D outer coil
- VT 0-135 deg C
- Auto tune/match
- 400 fitted with Cryofit flow cell equipment

¹H sensitivity

Probe geometry

¹H frequency

/MHz

Coil temp Signal-to-noise 1.4 mg of Fondaparinux, /K (NS = 1, anomerics) M_w =1726.77 g/mol (1.5 mM)

400 AV III	X(¹⁵ N- ³¹ P, ¹⁹ F) ¹ H	298	9:1	-0,50	
outer inner coil	X(¹⁵ N- ³¹ P)				
500 AV III HD		80	28:1	Melen March Marken Mille	Nh_www
500 AV III	¹³ C ¹ H	20	61:1		N
600 AV III HD	¹³ C, ¹⁵ N ¹ H	20	101:1		
800 AV III	¹³ C, ¹⁵ N ¹ H	20	140:1		
7		6	5	4	[ppm]

¹³C sensitivity

¹⁹F sensitivity

Inner/<mark>outer</mark> coil

X(¹⁹F)

¹H

298 K

Inner/<mark>outer</mark> coil

Primary interests / Aplications

- 500 MHz Departmental Service
- Predominantly for 1H and X nuclei (other than 13C) for structure characterisation mostly in automation
- 19F background suppression, COSY, NOESY, DOSY
- 19F-13C correlations: HSQC, HMBC (conventional and NUS speedy & highres versions)
- 31P 31P-1H & 1H-{31P}, 2D HMBC (& NUS versions)
- 29Si background supp. INEPT/DEPT, 2D HMBC
- 11B background supp. 1H-{11B}, HMQC (NUS ver.)
- 10B antiring sequence
- 7Li, 59Co,

Primary interests / Alications

- 400 MHz Prof Guy Lloyd-Jones group
- 1H/19F & X nuclei and reactions monitoring
- The same set up for all nuclei as on Departmental 500
- Cryofit flow cell equipment

NMR active nuclei

Periodic Table of the Elements

H	NMR active nuclei \circ s=1/2												He				
(<u> </u>)	Be	Frequently used nuclei									F	Ne					
Na	Mg	Not active nuclei								AI	Si	P	S	CI	Ar		
ĸ	Ca	Sc	Ti	v	Cr	Mn	Fe	C •	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	T	Xe
Cs	Ba	La	Hf	Ta	w		Os	Ir	Pt	Au	Hg	TI	РЬ	Bi	Po	At	Rn

Prodigy except between 199Hg and 153Eu (e.g. 137Ba, 17O, 9Be, 6Li...)

Examples: 19F zgbs_bb background suppression

Examples: 11B (zgbs_bb) background suppression

Example: 29Si (zgbs_bb) background suppression & INEPT

Examples: 10B (aring2_bb) antiring sequence

Examples: 19F COSY

 $\times 1V$

Examples: 31P HMBC (NUS) structure characterisation

Operational aspects

NMR at Edinburgh is 50 years old this year!

Nuclear Magnetic Resonance

Perkin Elmer R-10 NMR spectrometer

• 60 MHz persistent magnet

THE UNIVERSITY of EDINBURGH

CW mode

Installed in January 1964 Dr. Peter Schwarz

Operational aspects

- With shielded magnet very compact
- Room 3m x 3m is sufficient
- Installation straightforward versus He probes
- 16A power socket, N2 gas (6 bar) supply & backup N2
- No mess with flexlines, cables, compressor etc...
- Quality (dry) of N2 gas is critical !
- No He filters 😳
- Issues Yes ☺
- PROdigy = PROblems free NO! ☺

Issues Soft TransFer Line (TFL)

- Poor vacuum in TFL decreases hold time efficiency from about 10 days to less than one week.
- In LN2 consumption from 8 kg/day to up 10 kg/day
- Easy monitoring by In-build gui service monitor
- LN2 Dewar Pressure
- Initial DP after refill:
 26 mbar good vacuum
 50 mbar poor vacuum

- Had to pump FTL twice (every four months)
- Bruker is working on new improved version of TFL

Issues – LN2 refill problem under investigation

• Example of normal LN2 refill:

Dewar pressure: DP 6-8 mbar (purple) Heater – low (yellow) Exhaust temp: 298 K (orange)

Issues – LN2 refill problem Ice blockage ?

Example of "acceptable" LN2 refill:

Dewar pressure: DP 150 mbar ! Heater – high Exhaust temp: 298 K

Issues – LN2 refill problem complete ice blockage ?

• LN2 dewar does NOT accumulate any LN2 at all

Dewar pressure: DP 260 mbar ! Heater – 200 % ! Exhaust temp: Below 100 K ! Emergency warmup !

Issues – LN2 refill problem how it looks like

This is something you do not want to see \otimes

Issues – LN2 refill problem and what's behind

THE UNIVERSITY of EDINBURGH

Bruker's Enigma:

Issues / inconveniences Sudden loss of memory

- Greyed areas / missing data ?
- There is a cure Go to File & Renew Graphic Cache (Quick)

Nice tool but software is a bit temperamental

Issues / inconveniences Automation is the key

- Resistive touch screen
 It requires quite a firm touch sometimes even shaking magnet
- Capacitive touch screen would be welcome

Vivat Prodigy ?

Bionmr: two fold sensitivity of He cryo-probes still makes significant difference in 3D and nD expriments duration (4 times). Interactions (2D) – Prodigy!

Chemistry: you really do not need sensitivity of He cryoprobes unless you already have one.

Core capability for Chemistry Research – EPSRC & The University of Edinburgh

Other stuff

- Bruker: Windows 7 professional NO Server for NFS (Network File System) – no way to mount Linux PC hard drive
- 600 MHz TCI (Z44896/009) 1H non linearity about +0.9 dB

• 600 MHz AV I (2001) 3 channel working console available

• Additional 600 MHz AV I spare parts available too

Liquid-state NMR in the School of Chemistry @ Edinburgh now

Core capability for Chemistry Research – EPSRC & The University of Edinburgh