

Chemistry Research Laboratory

Introduction to MestreNova

28/10/2019

Outline

- Overview of Mnova
- Opening and processing 1D and 2D NMR data
- Peak picking and integration
- Multiplet Analysis for 1D H-1 NMR
- Report analysis results
- Assigning 1D and 2D peaks to a structure
- Stacking and superimposing spectra
- Predicting spectra from a structure
- What else can be done....

MestreNova v.12

To open and transform your NMR data

- Choose File | Open to open the raw data
- Or drag an fid file from a file browser to Mnova *
- Mnova automatically transforms the raw file into a spectrum (*including Windowing function, Fourier transform, phase correction etc*) **

*You can drag **multiple folders** that contain **fid** (or **ser**) files to Mnova to open multiple spectra simultaneously. **Parameters from the raw data are used for processing. You can view or change the processing parameters by choosing **Processing | Processing Parameters.**

To visualise your spectrum

- Zoom in/Zoom out (or press Z) *
 - Zoom out
- Full spectrum (or press F)
- Manual Zoom in to defined ppm range
- Pan spectrum (or press P)**
- Expansion click & drag to draw an inset (or press E)
- ↓ Fit to highest intensity
- ↓ I Fit to highest compound
- Increase Intensity (or rotate mouse wheel)
- Decrease Intensity (or rotate mouse wheel)
- -- Crosshair Cursor (or press C) for measuring J-couplings
- Cut (or press X) to hide parts of the spectrum

*Press **Z** several times to toggle between horizontal/vertical/box zoom

** Press **P** several times to toggle between free/horizontal/vertical panning

Editing your display preferences

Double click on spectrum or right-click and select "Properties"

 Properties — - 		8
Metadata Geometry M	IMR Spectrum	
General	-Background	
Grid	Color:	—
1D	Opacity:	0%
🔺 🎇 Scales		
Horizontal		
Uertical	Font:	MS Shell Dig 2
📌 Peaks	Format: {parm, "Title"}{br	
🍌 Integrals	Position:	Inside -
🔺 👬 Multiplets	Alignment:	Left
🖟 Integrals	Offset	
Fitting	Horizontal:	0.00%
Assignments	Vertical:	0.00%
Prediction		
_	<u>.</u>	
Set as Default Restore		OK Cancel Apply

Manual Processing

NUS Settings...

Apodisation

Apodisation increases signal to noise at the expense of resolution

Functions Basic Advanced	ł						
✓ Exponential	0.30			-	Hz		
Gaussian	1.00			÷	GB [Hz]	-	
Sine Bell	0.00	÷	•				
Sine Square	90.00	÷	•				
Sine Bell II	0.0	÷	%		50.0	÷	%
Sine Square II	0.0	*	%		50.0	*	%
First Point	0.50			* *			

Zero Filling

Zero filling increases the apparent acquired length of the FID, resulting in higher digital resolution and a "smoother" spectrum

Phasing

- mNova does an initial phase correction when data is loaded
- Further phase correction is often needed

Automatic phasing

🖲 💾 🤊 🤆 🖷	¢ ≠					NMR		MestReNova
File Home	View	Molecule	Prediction	Tools	Processing	Analysis /	Assignments	
Processing Template •	Apodizatio	on Zero Filling and LP	Manual Correction	Auto Phase Correction	Auto Baseli Correction	ne More ▼ Processing ▼		
Pages		ł	Processing	1º Auto	matic	nt 2* ×		
1. Quinine. 1. fid				Optic	713			

Automatic Phase Correction Options	? ×
Algorithms	
Global Mir	n. Entropy
Selective Bas	seline Optimization
Metabonomics V Re	gions Analysis
Initial Phase: Imported	-
Use only ranges highlighted Imported Current	
	OK Cancel

Automatic phase correction:

- Initial phaseAlgorithms

Experiment with different options for best results

Manual phasing

Manual phasing

Baseline correction

Poor baseline:

- Inaccurate integrals
- Difficult to analyse and compare spectra

Baseline correction algorithms

	NMR MestReNova
File Home View Molecule Prediction Tools Processing Template + Image: Apodization Zero Filling and LP Image: Apodization + Correction + Correction + Correction + Correction + Correction + Correction + Processing Pages Image: Apodization Image: Apodization Image: Apodization + Correction + Correction + Correction + Correction + Processing Pages Image: Apodization Image: Apodization Image: Apodization + Correction + Correctio + Correctio + Correction + Correction + Correctio + C	Processing Analysis Assignments Wore Correction Processing Baseline Correction B Full Auto (Whittaker Smoother) Multipoint Baseline Correction" • Click on "Baseline Correction" • Or Right-click in spectrum and select Many options available : • Whittaker Smoother* • Polynomial Fit • Bernstein Polynomial Fit • Ablative Splines

* Whittaker Smoother usually a good first choice

Baseline correction algorithms

Model the baseline by selecting points that fall on the baseline and then interpolating between these points.

Referencing

- Select peak to use as reference
- Use the dialogue box to define the reference

Reference along f	1				? 💌
Old Shift: New Shift: Annotation Solvent List	4.890 ppm 4.870 ppm MeOD	Ran	ge Width: 0.1	.00 ppm	*
1	Name	Shift (ppm)	Multiplicity	J (Hz)	
		3.560	1		
		1.110	m		
Methanol-d	4	4.870	1		F
		3.310	5	1.7	
Methylene (Chloride-d2	5.320	3	1.1	F
N,N-Dimeth	ylformamide-d7	8.030	1		F
		2.920	5	1.9	-
				Þ	
Restore Defaults	s Ad	ld	Edit	Delete	
		OK	Cancel	Solver	nts <<

1D Integration

- Click to do auto integration or click I to do it manually
- Double click on an integral curve to popup Integral Manager:

MestReNova ients J٨ ✓ Integrals === ✓ Integral Labels Auto Integration 🎊 🖇 ✓ Integral Curves Integra Use integration options to change the method and to specify other options Click and drag the left green box to change the range of the integral Ŕ

7 7.25 7.23 7.21 7.19

7.23 7.21 7.19

25

- Define a value to normalise the integrals
 Browse delete change calitization
- Browse, delete, change, split integrals interactively if needed

1D Peak picking

۲ 💌	୭ ୯ 🖶	Ŧ					NMR			MestReNova	L.	\sim
File	Home	View	Molecule	Prediction	n Tools	Processing	Analysis	Assignm	ents			L
Reference	Auto Pea Picking	₩ £ Ľ	× ⊞ □ * ⊕ □ Peaks	Peak Curves Peak Labels	Auto Multiple Analysis	<mark>兆 等 電</mark> ★ 冊 → ポ 品 Multiple	Multipl	et Boxes et Ranges et Curves	Auto Integratio	从 沢 田 沢 ※ … → m パ 涂 Integra	✓ Integrals ✓ Integral Labels ✓ Integral Curves Is	Line Fitting →
Auton	natic] [Manual									

- Peak picking: Click on "Auto Peak Picking" for automatic peak picking. Click on 🔀 for options.
- Manual peak picking is also available. The manual threshold option (shortcut K) allows you to select groups of peaks with different thresholds. The peak by peak option (ctrl-K) is useful if you have shoulder peaks or 'hidden peaks' that were not selected in automatic peak picking.

Peak information

- Click on I in the NMR | Analysis menu to access the Peaks table
- Or select "Peaks" from View | Tables
- This table gives information on peak area, intensity, linewidth, frequency (ppm and Hertz), etc.

Multiplet analysis

- Mnova provides two approaches to multiplet analysis:
 - Fully automatic: peak picking, integration and multiplet analysis all done
 bv one click, with peaks deconvoluted using GSD and classified *
 - **Manual**: click-and-drag to pick each multiplet interactively
- In either case you can refine the results interactively, and report them in selected journal or patent formats

¹ H NMR (400 MHz, CDCl₃) δ 8.62 (d, J = 4.5 Hz, 1H), 7.95 (d, J = 9.2 Hz, 1H), 7.46 (d, J = 4.5 Hz, 1H), 7.30 (dd, J = 9.2, 2.7 Hz, 1H), 7.21 (d, J = 2.7 Hz, 1H), 5.73 (ddd, J = 17.6, 10.3, 7.6 Hz, 1H), 5.48 (d, J = 4.3 Hz, 1H), 4.99 – 4.85 (m, 2H), 3.87 (s, 3H), 3.44 – 3.31 (m, 2H), 3.11 (td, J = 8.0, 7.5, 3.9 Hz, 1H), 3.05 (dd, J = 13.9, 10.2 Hz, 1H), 2.69 – 2.55 (m, 2H), 2.30 – 2.18 (m, 1H), 1.79 (h, J = 3.1 Hz, 1H), 1.69 (tdt, J = 12.5, 8.3, 2.6 Hz, 2H), 1.61 – 1.34 (m, 2H).

R (tdt)

1.69

Fully automatic multiplet analysis

- Click III to do automatic multiplet analysis. By default, it does the following:
 - Picks peaks using GSD (if no peaks were picked) and classify their types (compound, solvent, impurity peaks etc.). Note these are controlled by the Peak Picking options
 - Groups the picked peaks into multiplets and fits them to J-coupling patterns, and calculates their integrals (depending on the Multiplet Analysis options). Note these are controlled by the Multiplet Analysis Options
 - Estimates the total number of nuclides (NN) and normalizes the integrals for each multiplet

M Peak Picking Options	8 ×
Method:	GSD 🔻
Settings	
Refinement Level	Resolution
Ref. 1 (2 fitting cycles)	🔘 High
	Ormal
	C Low
	Custom 1.00 🔶
V Auto Classify	Impurities/Compounds
	Defaults
	OK Cancel

Advantages of GSD-based multiplet analysis

GSD extracts the spectral information from a ¹H spectrum automatically, without the need for peak picking and integration.

It usually gives good results when the spectrum is of decent quality and resolution, as shown here:

Change the settings to traditional multiplet analysis

- If you do not wish to use GSD-based peak picking and multiplets analysis, you can change the options back to the traditional method.
- Open a 1D NMR, then do the following to turn off GSD-based peak picking and multiplet integration:
 - For Peak Picking Options, change the Method to Standard to use the traditional peak maxima-based method, also turn off the Auto Classify if you don't want to classify peak types automatically
 - For Multiplet Analysis Options, change the Calculation Method to Sum*

<u>×</u> -	M Peak Picking Options
	Method: Standard Peak Picking Options Image: Standard Noise Factor: 300.00 Peaks Type: Only Positive
	Auto Classify Interactive Restore Default Options
•	Multiplet Analysis Options

* "Sum" is the traditional method of integration by summing up all points within the integration region.

To pick multiplets manually

- Manual Multiplet Analysis <u></u> allows you to have greater control of multiplet analysis (J is the shortcut key)
- Zoom into each multiplet, and click and drag to define the following:
 - Peak picking threshold
 - Integration region
- Mnova picks the peaks in the region, fits them to a *J*coupling pattern and defines the multiplet in the same way as in automatic multiplet analysis

--8.63

Tip: To turn on the integral curves, right click and select Properties, go to Multiplets > Integrals.

Tools for verifying multiplet analysis results

Multiplet Analysis

Many other multiplet analysis functions e.g.

- Split overlapping multiplets
- Add missing peaks to multiplets
- Re-assign peaks to multiplets (if asssigned incorrectly)

To annotate and report manually

- Click the **Annotation Options** button at the bottomleft corner of Mnova window
- Or press **T** to insert a text box
- All objects can be customized by right clicking on it and then selecting the **Properties** command
- Tables of Peaks, Integrals, Parameters etc can be opened by View | Tables. Report from there

Tips:

*Copy a **molecule** from ChemDraw or Isis/Draw, or open .mol or .sdf files

*Use View | Layout Templates menu to generate and apply layout templates, or request an auto **formatting script** from Mestrelab.

***Copy/paste** any object(s) to your document with high resolution

To report multiplets in journal format

- Click **Report Multiplets** to report the results in a journal format:
- To change journal format: choose
 View | Tables | Multiplets to display the Multiplets Table. Click Setup
 Report

Multiplets 📧		
Report Multiplets Setup Report Delete ¹ H NMR (400 MHz, CDCl ₃) & 8.62 (d, J = 4.5 Hz, 1H), 7.95 (d, J = 9.2 Hz, 1H), 7.51 - 7.43 (m, 1H), 7.30 (dd, J = 9.2, 2.7 Hz, 1H), 7.21 (d, J = 2.7 Hz, 1H), 5.73 (ddd, J = 17.1, 10.3, 7.6 Hz, 1H), 5.48 (d, J = 4.4 Hz, 1H), 4.99 - 4.85 (m, 2H), 3.87 (s, 3H), 3.44 - 3.31 (m, 2H), 3.17 - 2.99 (m, 2H), 2.69 - 2.56 (m, 2H), 2.30 - 2.18 (m, 1H), 1.90 (s, 2H), 1.83 - 1.62 (m, 3H), 1.61 - 1.34 (m, 2H). Name Shift Range H'r Integration	Multiplet Report	Multiplet Report 2 X JACS Angewandte JACS J.Med.Chem J.Nat.Products Japanese Patent Organometallics Polybedrop
Name Snift Range His Integr		RSC
1 C (m) 7.46 7.517.43 1 0.99	Reduce J List	Tetrahedron
2 A (d) 8.62 8.678.58 1 0.89	Use Extended Solvent Names	US Patent
3 ∩ (m) 171 183 167 3 376 ▼ 4 III ▶	OK Cancel	

Tip: From the Multiplet Table, click *Copy Multiplets* and then paste the texts to your document. Click *Copy Table* and then paste the spreadsheet to your document. The table can be customized using *Setup Table*.

To attach 1D to 2D spectra

- Open 1D and 2D spectra in the same document (They are shown as separate pages)
- Display the 2D spectrum, click the Traces tool options and choose Setup...
- Choose a 1D in the Available 1D Spectrum, click to attach it to that axis
- Alternatively, simply drag and drop the 1D spectrum onto the desired axis of the 2D spectrum

(mdd)

2D Peak picking

- Peak picking: Click on "Auto Peak Picking" for automatic peak picking. Click on for options.
- To pick peaks manually, select either the manual threshold option, or the peak by peak option, which allows you to specify each pick by clicking on the peak centre.

To assign spectra to a structure

- Choose either automatic or manual assignment mode ("A" key is a shortcut for manual assignment mode)
- For manual assignment, click on an **atom** in the structure (cursor will change to ^N
 Then choose the **peak** you want to assign. There are 3 ways to do it:
 - A picked multiplet, by clicking on the multiplet label, or
 - A peak top for 1D spectra / peak centre for 2D spectra, or
 - A range in the spectrum, by click-and-dragging to cover it

2D peaks are labelled by frequency and assignment

Example: assigning a multiplet to an atom

Tip: After the assignment, the atom label is changed to green. The multiplet label shows the atom label. The multiplet label can be turned off by unchecking Analysis | Multiplet Analysis | Show Multiplets

Example: assigning a peak to an atom

Tip: By Default, Mnova automatically snaps to a peak top (with interpolation). Click **Shift** *key one time to toggle it off if you want to choose a shoulder peak.*

To display and browse assignment results

- Choose View | Tables | Assignments to open the Assignments Table
- The Table and the structure are correlated: You can click a row to highlight the atom (and its assigned peak), and vice versa

* You can right click on an atom and choose **Edit Atom Data** to change its label. Changed labels will be used in Assignments Table and other relevant reports.

Example: assigning 2D peaks to an atom

- You can **either** first assign 1D H-1 peaks, and then assign HSQC cross peaks, **or** the opposite
- Assignments in one spectrum are carried over to all other spectra in the same document: All spectra in the same document are "correlated" by default
- To assign in HSQC, click A key to enter Assignment mode. Click on an atom in the structure. Next click on the cross peak to assign to it*

*By Default, Mnova automatically snaps to a peak top. Click **Shift** key one time to toggle it off if you want to manually locate the peak center.

The Assignment Table for multiple spectra

- Choose View | Tables | Assignments to open the Assignments Table if not yet
- The Table lists all assignment results, which can be copied to other documents
- Try Script | Report | Assignments to report the results in journal format

Assignments	s							
Report C	Copy Dele	te Expand	° - d Collapse					
Atom	Chemical Sl	Predicted S	COSY	TOCSY	HSQC	HMBC	H2BC	NOESY
⊿ 1 C	36.08				1', 1"	7		
H'	2.35				1			
H"	2.29				1			
2 C	79.42					7, 26		
3 C	79.40					13', 13",		
4 C	133.54					57', 57",		
5 C	142.27					57', 57",		
⊿ 6 C	72.46				6			
н	6.24				6			
47C	75.13				7	26		
Н	5.68		26		7	1, 2, 9, 28		
8 C	45.84				26			
9 C	58.92					7, 26, 21		
10 C	203.84					11, 21',		
⊿ 11 C	75.68				11			
Н	3.82				11	10		26
4 12 O								
H								
▲ 13 C	27.02				13', 13",			
H3	1.25				13	3		
▲ 14 C	21.95				14', 14",			
H3	1.15				14			
15 O								
16 O								
17 C	81.46					24'. 24"		

To superimpose multiple 1D spectra

Right-click on the spectra and choose **Properties** to change display properties, e.g. colours, transparency, etc.

- Open several 1D spectra in the same document
- Select some or all of them in the Pages View
- Click "Superimpose Items" to stack them in a new page:

To open and stack multiple 1D spectra

- Open several 1D spectra in the same document
- Select some or all of them in the Pages View
- Click "Stack Items" to stack them in a new page:

Right-click on the spectra and choose **Properties** to change display properties, e.g. tilting angle, colours, titles, clipping vertically etc.

To superimpose multiple 2D spectra

- Multiple 2D spectra can be stacked or superimposed in the same way as 1D spectra
- Click **Shift + Up Arrow** key to change the active spectrum
- Right click on it and select **Properties** to change the color of the contours for the active spectrum

Predicting spectra from a structure

- Open a new document (File | New) or a new page (Edit | Create New Page)
- Copy a structure from ChemDraw, Isis/Draw or ChemSketch, and paste to Mnova, or open a .mol, .cdx or a .sdf file
- Choose a command from the **Predict** menu

Tips:

1. Choose **Molecules | Prediction Options** to change settings

2. You can turn atom numbers on/off by right-clicking on the structure and choosing Properties.

3. You can open the **Prediction Table** to list the predicted shifts and J-couplings, and manually change them.

Predicting a spectrum & verifying your structure

- Open your ¹H (or ¹³C) **spectrum** in a new page
- Copy your **structure** from ChemDraw or Isis/Draw
- Choose Analysis | Predict & Compare. The predicted spectrum is stacked with the experimental one for visual comparison

You can drag the label of a predicted peak to change its chemical shift. You can also change the predicted Jcouplings in the 1H Prediction Table.

Other things you can do in Mnova... not covered today!

- Draw chemical structures
- Analyse Mass Spec data
- Copy and paste spectra directly in Word, Powerpoint etc
- Analyse kinetic time course data
- Simulate spectra from chemical shift and coupling data

e.g. analysing kinetic time course data:

For more information

mNova: <u>http://resources.mestrelab.com/</u>

Oxford CRL NMR: <u>http://nmrweb.chem.ox.ac.uk/</u>

Chemistry Research Laboratory